Add like
Add dislike
Add to saved papers

Remarkable structural effects on the complexation of actinides with H-phosphonates: a combined experimental and quantum chemical study.

The structural effects of the carbon chain on the extraction of actinides by organo-phosphorus extractants have been examined experimentally and by computation. Branched butyl H-phosphonates and their linear chain isomer, n-butyl H-phosphonate (DBHP), were synthesised and characterised using IR, NMR and GC-MS techniques. Their physical properties viz. viscosity, density and aqueous solubility have been examined. DBHP, Di-iso-butyl H phosphonate (DiBHP) and Di-sec-butyl H phosphonate (DsBHP) were employed for the extraction of uranium and americium ions from nitric acid. 233 U (α-tracer) and 241 Am (γ-tracer) were employed as representative isotopes for the extraction of U and Am, respectively, and their distribution ratios (D) were obtained as a function of nitric acid concentration (0.01-8 M). Branching of the alkyl chain at the secondary carbon atom showed unexpected neutral extractant behaviour for DsBHP which is generally classified as an acidic extractant. The acid-dependent dual extraction mechanisms for the H-phosphonates have been examined both experimentally and through quantum chemical calculations. This dramatic effect can be partly attributed to the hindrance in the formation of the enol tautomer through the strengthening of the P[double bond, length as m-dash]OH hydrogen bonding in the DsBHP extractant. Density functional theory (DFT) based calculations were carried out to understand the complexation behaviour of actinides with the two extractants. Possible structures and binding affinities of actinides with H-phosphonates have been deduced from electronic structure calculations. Finally, the trends in distribution ratios were additionally explored and correlated with experimental observations for both metal ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app