Add like
Add dislike
Add to saved papers

Reengineering deep brain stimulation for movement disorders: Emerging technologies.

Deep brain stimulation (DBS) is a neurosurgical technique, which consists of continuous delivery of an electrical pulse through chronically implanted electrodes connected to a neurostimulator, programmable in amplitude, pulse width, frequency, and stimulation channel. DBS is a promising treatment option for addressing severe and drug-resistant movement disorders. The success of DBS therapy is a combination of surgical implantation techniques, device technology, and clinical programming strategies. Changes in device settings require highly trained and experienced clinicians to achieve maximal therapeutic benefit for each targeted symptom, and optimization of stimulation parameters can take many visits. Thus, the development of innovative DBS technologies that can optimize the clinical implementation of DBS will lead to wider scale utilization. This review aims to present engineering approaches that have the potential to improve clinical outcomes of DBS, focusing on the development novel temporal patterns, innovative electrode designs, computational models to guide stimulation, closed-loop DBS, and remote programming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app