Add like
Add dislike
Add to saved papers

G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner.

Cell Death & Disease 2018 Februrary 16
Tumor metastasis is the leading cause of death in patients with advanced gastric cancer (GC). Limited therapeutic regimens are available for this condition, which is associated with a poor prognosis, and the mechanisms underlying tumor metastasis remain unclear. In the present study, increased histone methyltransferase G9A expression in GC tissues correlated with advanced stage and shorter overall survival, and in vitro and in vivo experiments revealed that G9A promoted tumor invasion and metastasis. Moreover, we observed that Reg IV induced G9A via the p-ERK/p-SP1 pathway. SP1 directly binds the G9A promoter and enhances G9A expression, and upregulated G9A then forms a transcriptional activator complex with P300 and GR, thereby promoting ITGB3 expression induced by dexamethasone (DEX) and contributing to GC metastasis. However, the G9A-mediated increase in ITGB3 expression was not dependent on the SET domain and methyltransferase activity of G9A. This study demonstrates that G9A is an independent prognostic marker and promotes metastasis in GC, thus suggesting that it may be a tumor biomarker and potential therapeutic target in GC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app