Add like
Add dislike
Add to saved papers

Production of an innovative biowaste-derived fertilizer: Rapid monitoring of physical-chemical parameters by hyperspectral imaging.

In this work the possibility to apply hyperspectral imaging as a fast and non-destructive technique for the monitoring of the production process at pilot plant scale of an innovative biowaste-derived fertilizer was explored. Different mixtures of urban organic waste, farm organic residues, biochar and vegetable active principles were selected and utilized in two different European countries, Italy and Spain, for the production of the innovative fertilizer. The biowaste-derived fertilizer samples were collected from the pilot plant piles at different curing time and acquired by the hyperspectral imaging device. Spectra have been collected in the near infrared wavelength range (1000-1700 nm). Conventional analyses were carried out on the same samples in order to find correlations between the physical-chemical parameters detected at laboratory scale, and the acquired reflectance spectra. The investigated parameters were: pH, electrical conductivity, soluble total organic carbon and soluble total nitrogen. Hyperspectral data were processed adopting chemometric strategies through the application of principal component analysis, for exploratory purposes, and partial least squares analysis to establish correlations between spectral features and measured physical-chemical parameters. Good correlations, with R2 ranging between 0.85 and 0.96, were obtained for all the investigated parameters. Results showed as the proposed approach, based on hyperspectral imaging, is suitable to be adopted for a rapid and non-destructive monitoring of waste-derived fertilizer production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app