Add like
Add dislike
Add to saved papers

Biomechanical simulation of traumatic brain injury in the rat.

Clinical Biomechanics 2018 January 32
BACKGROUND: Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans.

METHODS: Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized.

FINDINGS: When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models.

INTERPRETATION: Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app