Add like
Add dislike
Add to saved papers

Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.

Hematite (α-Fe2O3) nanostructures have been extensively studied as photo-anodes for the conversion of sunlight into chemical fuels by water splitting. A number of factors limit the photo-activity of pristine hematite nanostructures, including poor electrical conductivity and long penetration depth of light. Previous studies have shown that use of tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their morphological, optical and electrical properties. This article presents impedance spectroscopic investigation of interplay between Sn-doping and the photoanode performance for photoelectrochemical water splitting using hematite nanostructure. Mott-Schottky measurements show that the Sn dopant serves as electron donor and increases the donor density of Sn-doped α-Fe2O3 nanostructured layer to 2.39 × 1019 cm-3. Photoelectrochemical impedance spectroscopy shows efficient photogenerated charge transfer from hematite to electrolyte in Sn-doped α-Fe2O3 nanostructure. The Sn-doped α-Fe2O3 nanostructure exhibit a photocurrent density of 1.2 mA/cm2 at 1.4 V versus RHE electrode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app