Add like
Add dislike
Add to saved papers

Removing Control of Cyclodextrin-Drug Complexes Using High Affinity Molecule.

Nanostructured supramolecular assemblies with hydrophobic cavities are used for improving the solubility, bioavailability, and stability of poorly water soluble drugs. In particular, host-guest inclusion using 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD) is a typical approach in the pharmaceutical field. In this study, celecoxib (CXB), a cyclooxygenase-2 selective nonsteroidal anti-inflammatory drug (NSAID), was used as the model drug (guest material) and effectively incorporated into HP-β-CD (host material). After forming a complete complex of HP-β-CD and CXB, 1-adamantylamine (ADA) was used to allow CXB to be released from the HP-β-CD in a concentration-dependent manner. This was revealed from Fourier-transform infrared spectroscopy and drug dissolution studies. Notably, the use of ADA, which is a high-affinity guest molecule, with cyclodextrin accelerated the removal of CXB from the host material through the exchange of guest molecules. Taken together, the host-guest based approach using a second guest molecule is useful for regulating on-demand drug release and could therefore be a potential tool for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app