Add like
Add dislike
Add to saved papers

Origin and scaling of chaos in weakly coupled phase oscillators.

Physical Review. E 2018 January
We discuss the behavior of the largest Lyapunov exponent λ in the incoherent phase of large ensembles of heterogeneous, globally coupled, phase oscillators. We show that the scaling with the system size N depends on the details of the spacing distribution of the oscillator frequencies. For sufficiently regular distributions λ∼1/N, while for strong fluctuations of the frequency spacing λ∼lnN/N (the standard setup of independent identically distributed variables belongs to the latter class). In spite of the coupling being small for large N, the development of a rigorous perturbative theory is not obvious. In fact, our analysis relies on a combination of various types of numerical simulations together with approximate analytical arguments, based on a suitable stochastic approximation for the tangent space evolution. In fact, the very reason for λ being strictly larger than zero is the presence of finite-size fluctuations. We trace back the origin of the logarithmic correction to a weak synchronization between tangent and phase-space dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app