Add like
Add dislike
Add to saved papers

Synthesis of dual temperature - and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior.

Dual stimuli-responsive yolk-shell nanoparticles with cross-linked poly(acrylic acid) (PAA) pH-responsive core and cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) temperature-responsive shell were synthesized via two different methods In the first method, silica encapsulated PAA (PAA@SiO2 ) was used as seed in distillation precipitation polymerization (DPP) of HEMA to yield PAA@SiO2 @PHEMA from which silica layer was etched by HF solution to produce yolk-shell PAA@air@PHEMA nanoparticles. In the second method, swollen PAA nanoparticles at pH = 10 were used as seeds in emulsion polymerization of HEMA to yield core-shell PAA@PHEMA nanoparticles. After dispersion of PAA@PHEMA nanoparticles in acidic medium at pH = 2, yolk-shell nanoparticles were formed through deswelling of pH-responsive cores due to protonation of carboxyl groups. Synthesized nanoparticles were characterized using FT-IR, FE-SEM and TEM methods to observe yolk-shell nanostructure for both synthesis routes. Stimuli-responsive behavior of the nanoparticles was investigated by UV-vis spectrometer where similar behaviors were obtained for template-assisted and template-free synthesized yolk-shell nanoparticles. Finally, both yolk-shell nanoparticles were examined as potential carriers for controlled release of doxorubicin hydrochloride (DOX) anti-cancer drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app