Add like
Add dislike
Add to saved papers

Insulin enhances GABA A receptor-mediated inhibitory currents in rat central amygdala neurons.

Insulin, a pancreatic hormone, can access the central nervous system, activate insulin receptors distributed in selective brain regions and affect various cellular functions such as neurotransmission. We have previously shown that physiologically relevant concentration of insulin potentiates the GABAA receptor-mediated tonic inhibition and reduces excitability of rat hippocampal CA1 neurons. The central nucleus of the amygdala (CeA) comprises heterogeneous neuronal populations that can respond to hormonal stimulus. Using quantitative PCR and immunofluorescent labeling, we report that the mRNA and protein of the insulin receptor are abundantly expressed in the rat CeA. The insulin receptor mRNA is also detected in the CeA from post-mortem human brain samples. Furthermore, our whole-cell patch-clamp recordings show that the application of insulin (5 and 50 nM) selectively enhances the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) in rat CeA neurons. Our findings reveal that GABAergic synaptic transmission is a target in the CeA for insulin receptor signaling that may underlie insulin modulation of emotion- and feeding-related behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app