Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High efficiency classification of children with autism spectrum disorder.

Autism spectrum disorder (ASD) is a wide-ranging collection of developmental diseases with varying symptoms and degrees of disability. Currently, ASD is diagnosed mainly with psychometric tools, often unable to provide an early and reliable diagnosis. Recently, biochemical methods are being explored as a means to meet the latter need. For example, an increased predisposition to ASD has been associated with abnormalities of metabolites in folate-dependent one carbon metabolism (FOCM) and transsulfuration (TS). Multiple metabolites in the FOCM/TS pathways have been measured, and statistical analysis tools employed to identify certain metabolites that are closely related to ASD. The prime difficulty in such biochemical studies comes from (i) inefficient determination of which metabolites are most important and (ii) understanding how these metabolites are collectively related to ASD. This paper presents a new method based on scores produced in Support Vector Machine (SVM) modeling combined with High Dimensional Model Representation (HDMR) sensitivity analysis. The new method effectively and efficiently identifies the key causative metabolites in FOCM/TS pathways, ranks their importance, and discovers their independent and correlative action patterns upon ASD. Such information is valuable not only for providing a foundation for a pathological interpretation but also for potentially providing an early, reliable diagnosis ideally leading to a subsequent comprehensive treatment of ASD. With only tens of SVM model runs, the new method can identify the combinations of the most important metabolites in the FOCM/TS pathways that lead to ASD. Previous efforts to find these metabolites required hundreds of thousands of model runs with the same data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app