Add like
Add dislike
Add to saved papers

A Structure-Activity Relationship Study of Bitopic N 6 -Substituted Adenosine Derivatives as Biased Adenosine A 1 Receptor Agonists.

The adenosine A1 receptor (A1 AR) is a potential novel therapeutic target for myocardial ischemia-reperfusion injury. However, to date, clinical translation of prototypical A1 AR agonists has been hindered due to dose limiting adverse effects. Recently, we demonstrated that the biased bitopic agonist 1, consisting of an adenosine pharmacophore linked to an allosteric moiety, could stimulate cardioprotective A1 AR signaling in the absence of unwanted bradycardia. Therefore, this study aimed to investigate the structure-activity relationship of compound 1 biased agonism. A series of novel derivatives of 1 were synthesized and pharmacologically profiled. Modifications were made to the orthosteric adenosine pharmacophore, linker, and allosteric 2-amino-3-benzoylthiophene pharmacophore to probe the structure-activity relationships, particularly in terms of biased signaling, as well as A1 AR activity and subtype selectivity. Collectively, our findings demonstrate that the allosteric moiety, particularly the 4-(trifluoromethyl)phenyl substituent of the thiophene scaffold, is important in conferring bitopic ligand bias at the A1 AR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app