Add like
Add dislike
Add to saved papers

Quenching-free fluorescence signal from plastic-fibres in proton dosimetry: understanding the influence of Čerenkov radiation.

The origin of photons emitted in optical fibres under proton irradiation has been attributed to either entirely Čerenkov radiation or light consisting of fluorescence with a substantial amount of Čerenkov radiation. The source of the light emission is assessed in order to understand why the signal from optical fibres irradiated with protons is reportedly quenching-free. The present study uses the directional emittance of Čerenkov photons in 12 MeV and 20 MeV electron beams to validate a Monte Carlo model for simulating the emittance and transmission of Čerenkov radiation in optical fibres. We show that fewer than 0.01 Čerenkov photons are emitted and guided per 225 MeV proton penetrating the optical fibre, and that the Čerenkov signal in the optical fibre is completely negligible at the Bragg peak. Furthermore, on taking the emittance and guidance of both fluorescence and Čerenkov photons into account, it becomes evident that the reported quenching-free signal in PMMA-based optical fibres during proton irradiation is due to fluorescence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app