Add like
Add dislike
Add to saved papers

Gigantol inhibits Wnt/β-catenin signaling and exhibits anticancer activity in breast cancer cells.

BACKGROUND: Gigantol is a bibenzyl compound derived from several medicinal orchids. This biologically active compound has been shown to have promising therapeutic potential against cancer cells, but its mechanism of action remains unclear.

METHODS: The inhibitory effect of gigantol on Wnt/β-catenin signaling was evaluated with the SuperTOPFlash reporter system. The levels of phosphorylated low-density lipoprotein receptor related protein 6 (LRP6), total LRP6 and cytosolic β-catenin were determined by Western blot analysis. The expression of Wnt target genes was analyzed using real-time PCR. Cell viability was measured with a MTT assay. The effect of gigantol on cell migration was examined using scratch wound-healing and transwell migration assays.

RESULTS: Gigantol decreased the level of phosphorylated LRP6 and cytosolic β-catenin in HEK293 cells. In breast cancer MDA-MB-231 and MDA-MB-468 cells, treatment with gigantol reduced the level of phosphorylated LRP6, total LRP6 and cytosolic β-catenin in a dose-dependent manner, resulting in a decrease in the expression of Wnt target genes Axin2 and Survivin. We further demonstrated that gigantol suppressed the viability and migratory capacity of breast cancer cells.

CONCLUSION: Gigantol is a novel inhibitor of the Wnt/β-catenin pathway. It inhibits Wnt/β-catenin signaling through downregulation of phosphorylated LRP6 and cytosolic β-catenin in breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app