Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Limononic Acid Oxidation by Hydroxyl Radicals and Ozone in the Aqueous Phase.

Kinetics and mechanism of limononic acid (3-isopropenyl-6-oxoheptanoic acid, LA) oxidation by hydroxyl radicals (OH) and ozone (O3 ) were studied in the aqueous phase at 298 ± 2 K. These reactions were investigated using liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The rate coefficients determined for LA + OH reaction were: 1.3 ± 0.3 × 1010 M-1 s-1 at pH = 2 and 5.7 ± 0.6 × 109 M-1 s-1 at pH = 10. The rate coefficient determined for LA ozonolysis was 4.2 ± 0.2 × 104 M-1 s-1 at pH = 2. The calculated Henry's law constant (H) for LA was ca. 6.3 × 106 M × atm-1 , thereby indicating that in fogs and clouds with LWC = 0.3-0.5 g × m-3 LA will reside entirely in the aqueous phase. Calculated atmospheric lifetimes due to reaction with OH and O3 strongly indicate that aqueous-phase oxidation can be important for LA under realistic atmospheric conditions. Under acidic conditions, the aqueous-phase oxidation of LA by OH will dominate over reaction with O3 , whereas the opposite is more likely when pH ≥ 4.5. The aqueous-phase oxidation of LA produced keto-limononic acid and a number of low-volatility products, such as hydroperoxy-LA and α-hydroxyhydroperoxides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app