Add like
Add dislike
Add to saved papers

Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable Yet Electronically Transparent Electrodes.

ACS Nano 2018 March 28
The electronic properties and extreme thinness of graphene make it an attractive platform for exploring electrochemical interactions across dissimilar environments. Here, we report on the systematic tuning of the electrocatalytic activity toward the oxygen reduction reaction (ORR) via heterostructures formed by graphene modified with a metal underlayer and an adlayer consisting of a molecular catalyst. Systematic voltammetric testing and electrochemical imaging of patterned electrodes allowed us to confidently probe modifications on the ORR mechanisms and overpotential. We found that the surface configuration largely determined the ORR mechanism, with adlayers of porphyrin molecular catalysts displaying a higher activity for the 2e- pathway than the bare basal plane of graphene. Surprisingly, however, the underlayer material contributed substantially to lower the activation potential for the ORR in the order Pt > Au > SiO x , strongly suggesting the involvement of the solution-excluded metal on the reaction. Computational investigations suggest that ORR enhancements originate from permeation of metal d-subshell electrons through the graphene layer. In addition, these physically impermeable but electronically transparent electrodes displayed tolerance to cyanide poisoning and stability toward long-term cycling, highlighting graphene as an effective protection layer of noble metal while enabling electrochemical interactions. This work has implications in the mechanistic understanding of 2D materials and core-shell-type heterostructures for electrocatalytic reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app