Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Accurate and fast path computation on large urban road networks: A general approach.

Accurate and fast path computation is essential for applications such as onboard navigation systems and traffic network routing. While a number of heuristic algorithms have been developed in the past few years for faster path queries, the accuracy of them are always far below satisfying. In this paper, we first develop an agglomerative graph partitioning method for generating high balanced traverse distance partitions, and we constitute a three-level graph model based on the graph partition scheme for structuring the urban road network. Then, we propose a new hierarchical path computation algorithm, which benefits from the hierarchical graph model and utilizes a region pruning strategy to significantly reduce the search space without compromising the accuracy. Finally, we present a detailed experimental evaluation on the real urban road network of New York City, and the experimental results demonstrate the effectiveness of the proposed approach to generate optimal fast paths and to facilitate real-time routing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app