Add like
Add dislike
Add to saved papers

Refractive index sensor based on graphene-coated photonic surface-wave resonance.

Optics Letters 2018 Februrary 16
We propose a graphene-coated photonic system with the excitation of Bloch surface waves (BSWs) for refractive index sensing. Through manipulation of the BSW resonance in the truncated photonic crystal under a Kretschmann configuration, the absorption in a graphene monolayer is significantly enhanced, assisted by the strong electromagnetic confinement of BSWs. The sharp and low reflectivity dip and the strong wave-environment interaction enable highly sensitive optical sensing. First-order perturbation theory and transfer-matrix calculation indicate that the system sensitivity is strongly related to the ratio of the electric field energy in the detection area, operation wavelength, and incident angle. Study shows that the wavelength sensitivity and figure of merit of the optimized system can reach 7023  nm/RIU and 196.44, respectively. More generalized BSW system configurations, e.g., aperiodic BSW design, are proposed for refractive index sensing application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app