Add like
Add dislike
Add to saved papers

Room Temperature Formation of Carbon Onions via Ultrasonic Agitation of MoS₂ in Isopropanol.

Ultrasonic agitation is a proven method for breaking down layered materials such as MoS2 into single or few layer nanoparticles. In this experiment, MoS2 powder is sonicated in isopropanol for an extended period of time in an attempt to create particles of the smallest possible size. As expected, the process yielded a significant quantity of nanoscale MoS2 in the form of finite layer sheets with lateral dimensions as small as a few tens of nanometers. Although no evidence was found to indicate a larger the longer sonication times resulted in a significant increase in yield of single layer MoS2, the increased sonication did result in the formation of several types of carbon allotropes in addition to the sheets of MoS2. These carbon structures appear to originate from the breakdown of the isopropanol and consist of finite layer graphite platelets as well as a large number of multi-walled fullerenes, also known as carbon onions. Both the finite layer graphite and MoS2 nanoplatelets were both found to be heavily decorated with carbon onions. However, isolated clusters of carbon onions could also be found. Our results show that liquid exfoliation of MoS2 is not only useful for forming finite layer MoS2, but also creating carbon onions at room temperature as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app