Add like
Add dislike
Add to saved papers

Fabrication of Highly Sensitive Nonenzymatic Electrochemical H₂O₂ Sensor Based on Pt Nanoparticles Anchored Reduced Graphene Oxide.

A highly sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated using platinum nanoparticles decorated reduced graphene oxide (Pt/rGO) nanocomposite. The Pt/rGO nanocomposite was prepared by single-step chemical reduction method. Nanocomposite was characterized by various analytical techniques including Raman spectroscopy, X-ray diffraction, field emission scanning electron microscope and high-resolution transmission electron microscopy. Screen printed electrodes (SPEs) were fabricated and the nanocomposite was cast on the working area of the SPE. Cyclic voltammetry and amperometry demonstrated that the Pt/rGO/SPE displayed much higher electrocatalytic activity towards the reduction of H2O2 than the other modified electrodes. The sensor exhibited wide linear detection range (from 10 μM to 8 mM), very high sensitivity of 1848 μA mM-1 cm-2 and a lower limit of detection of 0.06 μM. The excellent performance of Pt/rGO/SPE sensor were attributed to the reduced graphene oxide being used as an effective matrix to load a number of Pt nanoparticles and the synergistic amplification effect of the two kinds of nanomaterials. Moreover, the sensor showed remarkable features such as good reproducibility, repeatability, long-term stability, and selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app