Add like
Add dislike
Add to saved papers

Hydroxyapatite Nanoparticle-Coated 3D-Printed Porous Ti6Al4V and CoCrMo Alloy Scaffolds and Their Biocompatibility to Human Osteoblasts.

Hydroxyapatite nanoparticles were prepared by hydrothermal method using calcium nitrate and phosphoric acid as precursors and ammonia aqueous solution as a pH value adjustor. The 3D-printed porous Ti6Al4V and CoCrMo alloy scaffolds were effectively coated with hydroxyapatite nanoparticles in the hydrothermal synthesis process by deposition method. Coating hydroxyapatite nanoparticles on the implant surfaces increased their biocompatibility and bioactivity. HAP-deposited Ti6Al4V or HAP-deposited CoCrMo scaffold induced no statistical increase in terms of apoptosis in hFOB1.19 cells compared with bare Ti6Al4V or bare CoCrMo. Interestingly, HAP coating groups presented CCK-8 values compared with bare groups suggesting that HAP could enhance cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app