Add like
Add dislike
Add to saved papers

Okra ( Abelmoschus esculentus ) Plant Extract-Assisted Combustion Synthesis and Characterization Studies of Spinel ZnAl₂O₄ Nano-Catalysts.

Spinel ZnAl2O4 nano-catalysts were synthesized by a simple, economical and eco-friendly microwave irradiation (MIM) and conventional heating methods (CHM), using metal nitrates and Okra (Abelmoschus esculentus) plant extract, which play a dual role of both oxidizing and reducing nature. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) and selected area electron diffraction (SAED) pattern results were confirmed that the samples have a single-phase cubic spinel structure with high crystalline nature of ZnAl2O4. Surface morphology of the samples was revealed by high resolution scanning electron microscopy (HR-SEM) and high resolution transmission electron microscopy (HR-TEM) techniques and they are confirmed particle-like structure with grain size below 50 nm. The optical band gap (Eg) was measured using Kubelka-Munk model by UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) and the Eg value is higher for MIM product than CHM, due to the smaller particle size of ZnAl2O4-MIM. The magnetic property of the samples was determined by vibrating sample magnetometer (VSM) and showed a superparamagnetic behavior. Spinel ZnAl2O4 nano-catalysts are magnetically recyclable and could be reused with no significant loss in catalytic activity. Both the samples were successfully tested as catalysts for the conversion of alcohols into respective carbonyl compounds using H2O2 (as oxidant) and acetonitrile (as a solvent) system. It was found that the ZnAl2O4-MIM nanocatalysts show best performance of conversion of alcohols into a carbonyl compounds than that of ZnAl2O4-CHM, due to the smaller particle size and higher surface area of ZnAl2O4-MIM samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app