Add like
Add dislike
Add to saved papers

Diverse effect of BMP-2 homodimer on mesenchymal progenitors of different origin.

Human Cell 2018 April
Bone morphogenetic protein-2 (BMP-2), is a potential factor to enhance osseointegration of dental implants. However, the appropriate cellular system to investigate the osteogenic effect of BMP-2 in vitro in a standardized manner still needs to be defined. The aim of this study was to examine the effect of BMP-2 on the cell proliferation and osteogenic differentiation of human osteogenic progenitors of various origins: dental pulp stem cells (DPSC), human osteosarcoma cell line (Saos-2) and human embryonic palatal mesenchymal cell line (HEPM). For induction of osteogenic differentiation, cell culture medium was supplemented with BMP-2 homodimer alone or in combination with conventionally used differentiation inducing agents. Differentiation was monitored for 6-18 days. To assess differentiation, proliferation rate, alkaline phosphatase activity, calcium deposition and the expression level of osteogenic differentiation marker genes (Runx2, BMP-2) were measured. BMP-2 inhibited cell proliferation in a concentration and time-dependent manner. In a concentration which caused maximal cell proliferation, BMP-2 did not induce osteogenic differentiation in any of the tested systems. However, it had a synergistic effect with the osteoinductive medium in both DPSC and Saos-2, but not in HEPM cells. We also found that the differentiation process was faster in Saos-2 than in DPSCs. Osteogenic differentiation could not be induced in the osteoblast progenitor HEPM cells. Our data suggest that in a concentration that inhibits proliferation the differentiation inducing effect of BMP-2 is evident only in the presence of permissive osteoinductive components. β-glycerophosphate, was identified interacting with BMP-2 in a synergistic manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app