Add like
Add dislike
Add to saved papers

Preparation of porous hollow Fe 3 O 4 /P(GMA-DVB-St) microspheres and application for lipase immobilization.

Functional porous hollow microspheres with superparamagnetism, Fe3 O4 /P(GMA-DVB-St) microspheres, were prepared via a dispersion polymerization based on hollow Fe3 O4 microspheres. The resulting hollow microspheres were characterized by means of Fourier-transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) gas sorptometry, and vibrating sample magnetometer (VSM). It is verified that the resulting hollow microspheres are porous and have high saturation magnetization. For further application, candida rugosa lipase (CRL) was immobilized onto the hollow microshperes, the loading amount of lipase was 143.88 mg CRL/g support and the activity recovery of the obtained immobilized lipase reached 73.25%. Besides, the resulting immobilized CRL (ICRL) were found to have better pH endurance and temperature endurance than the free ones, which showed the optimal catalytic activity with pH of 9.0 and temperature of 60 °C. The ICRL displayed excellent reusability as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app