Add like
Add dislike
Add to saved papers

MiR-200a promotes epithelial-mesenchymal transition of endometrial cancer cells by negatively regulating FOXA2 expression.

Die Pharmazie 2017 November 2
Endometrial cancer is the most common gynecological cancer. Epithelial-mesenchymal transition (EMT) plays a critical role in tumor invasion and metastasis, which limits the success of treatment. Here, we investigated the roles of forkhead box A2 (FOXA2) and microRNA-200a (miR-200a) in regulating the EMT of endometrial cancer cells RL95-2. Empty vector or FOXA2 was stably transfected into RL95-2 cells. MTT assay measured cell proliferation, apoptosis assay measured apoptosis, Transwell invasion assay measured cell invasion, and Western blot measured the protein expression of FOXA2, E-cadherin, and vimentin. ChIP assay determined the binding of FOXA2 to E-cadherin promoter. For miR-200a analysis, the cells with stable FOXA2 expression were transfected with miR-negative control or miR-200a. Forced expression of FOXA2 decreased the proliferation and invasion, and increased the apoptosis of RL95-2 cells. FOXA2 also affected the EMT-associated proteins: FOXA2 increased the protein expression of E-cadherin and decreased the expression of vimentin. Moreover, FOXA2 positively regulated the promoter of E-cadherin in RL95-2 cells. Luciferase reporter assay identified FOXA2 as a target of miR-200a, which negatively regulated FOXA2. Western blot results showed that overexpression of miR-200a decreased the expression of E-cadherin but increased the expression of vimentin in the endometrial cancer cells by downregulating FOXA2 expression. FOXA2 may act as a tumor suppressor and inhibit EMT of endometrial cancer cells. FOXA2 expression is controlled by miR-200a, which promotes EMT of the endometrial cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app