Add like
Add dislike
Add to saved papers

Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition.

In this study, magnetic nanoparticles (MNPs) coated with glycine (F-Gly NPs) and conjugated with methotrexate (MTX) (F-Gly-MTX NPs) were synthesized through a coprecipitation method followed by amidation reaction between the carboxylic acid end groups on MTX and the amine groups on the MNPs surface and studied its cytotoxic effect in vitro. The successful conjugating of MTX onto the nanoparticles (NPs) was confirmed by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. The results showed that the average size was 46.82 ± 5.03 nm. This target drug delivery system is dependent on the release of the MTX within the lysosomal compartment. Hemolysis assay and cytotoxicity study results on HFF-2 and HEK-293 cell lines show that as prepared MNPs are biocompatible. The cytotoxicity of void of the MTX and F-Gly-MTX NPs were compared to each other by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of the treated MCF-7 cell line. Enzymatic release studies exhibited the release of the MTX via peptide bond cleavage in the presence of proteinase K. These studies specify that the F-Gly-MTX NPs have a very remarkable anticancer effect, for breast cancer cell line. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1646-1654, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app