Add like
Add dislike
Add to saved papers

Dielectric properties of a bisimidazolium salt with dodecyl sulfate anion doped with carbon nanotubes.

A new bisimidazolium salt with dodecyl sulfate as counterion has been designed and prepared. This salt shows a SmA phase that is stable at room temperature. The new ionic liquid crystal (ILC) was characterized by 1 H NMR, 13 C NMR and IR spectroscopy. Its liquid crystalline properties were analyzed by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD) studies. The dielectric spectra of the ILC doped with different concentrations of carbon nanotubes (CNT) were recorded over a wide frequency and temperature range of 10-1 to 107 Hz and 293-338 K, respectively. The values of the activation energy were found in the range of 0.46-0.61 eV; the characteristic time was obtained by fitting the spectra of the dielectric loss with the Havriliak-Negami functions. As a result of doping the ILC with CNT, the electric conductivity increases significantly. Ionic conductivity is dominant and it was indirectly observed through the electrode polarization (EP) effect. The very high dielectric permittivity values and the decrease of the electric conductivity at low frequencies confirm the presence of EP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app