Add like
Add dislike
Add to saved papers

Improved estimation of SNP heritability using Bayesian multiple-phenotype models.

Linear mixed models (LMM) are widely used to estimate narrow sense heritability explained by tagged single-nucleotide polymorphisms (SNPs). However, those estimates are valid only if large sample sizes are used. We propose a Bayesian covariance component model (BCCM) that takes into account the genetic correlation among phenotypes and genetic correlation among individuals. The use of the BCCM allows us to circumvent issues related to small sample sizes, including overfitting and boundary estimates. Using expression of genes in breast cancer pathway, obtained from the Multiple Tissue Human Expression Resource (MuTHER) project, we demonstrate a significant improvement in the accuracy of SNP-based heritability estimates over univariate and likelihood-based methods. According to the BCCM, except CHURC1 (h2  = 0.27, credible interval = (0.2, 0.36)), all tested genes have trivial heritability estimates, thus explaining why recent progress in their eQTL identification has been limited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app