Add like
Add dislike
Add to saved papers

Quantification of hepatic perfusion and hepatocyte function with dynamic gadoxetic acid-enhanced MRI in patients with chronic liver disease.

The purpose of the present study was to develop and perform initial validation of dynamic MRI enhanced with gadoxetic acid as hepatobiliary contrast agent to quantify hepatic perfusion and hepatocyte function in patients with chronic liver disease. Free-breathing, dynamic gadoxetic acid-enhanced MRI was performed at 3.0 T using a 3D time-resolved angiography sequence with stochastic trajectories during 38 min. A dual-input three-compartment model was developed to derive hepatic perfusion and hepatocyte function parameters. Method feasibility was assessed in 23 patients with biopsy-proven chronic liver disease. Parameter analysis could be performed in 21 patients (91%). The hepatocyte function parameters were more discriminant than the perfusion parameters to differentiate between patients with minimal fibrosis (METAVIR F0-F1), intermediate fibrosis (F2-F3) and cirrhosis (F4). The areas under the receiver operating characteristic curves (ROCs) to diagnose significant fibrosis (METAVIR F ≥ 2) were: 0.95 (95% CI: 0.87-1; P <0.001) for biliary efflux, 0.88 (95% CI: 0.73-1; P <0.01) for sinusoidal backflux, 0.81 (95% CI: 0.61-1; P <0.05) for hepatocyte uptake fraction and 0.75 (95% CI: 0.54-1; P <0.05) for hepatic perfusion index (HPI), respectively. These initial results in patients with chronic liver diseases show that simultaneous quantification of hepatic perfusion and hepatocyte function is feasible with free breathing dynamic gadoxetic acid-enhanced MRI. Hepatocyte function parameters may be relevant to assess liver fibrosis severity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app