Add like
Add dislike
Add to saved papers

Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties.

The rapid spread of strains of malaria parasites that are resistant to several drugs has threatened global malaria control. Hence, the aim of this study was to predict the antimalarial activity of chemical compounds that possess anti-hemozoin-formation activity as a new means of antimalarial drug discovery. After the initial in vitro anti-hemozoin-formation high-throughput screening (HTS) of 9,600 compounds, a total of 224 hit compounds were identified as hemozoin inhibitors. These 224 compounds were tested for in vitro erythrocytic antimalarial activity at 10 μM by using chloroquine-mefloquine-sensitive Plasmodium falciparum strain 3D7A. Two independent experiments were conducted. The physicochemical properties of the active compounds were extracted from the ChemSpider and SciFinder databases. We analyzed the extracted data by using Bayesian model averaging (BMA). Our findings revealed that lower numbers of S atoms; lower distribution coefficient (log D) values at pH 3, 4, and 5; and higher predicted distribution coefficient (ACD log D) values at pH 7.4 had significant associations with antimalarial activity among compounds that possess anti-hemozoin-formation activity. The BMA model revealed an accuracy of 91.23%. We report new prediction models containing physicochemical properties that shed light on effective chemical groups for synthetic antimalarial compounds and help with in silico screening for novel antimalarial drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app