Add like
Add dislike
Add to saved papers

Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells.

Quantitative structure-activity relationship (QSAR) models for nanomaterials (nano-QSAR) were developed to predict the cytotoxicity of 20 different types of multiwalled carbon nanotubes (MWCNTs) to human lung cells by using quasi-SMILES. The optimal descriptors, recorded as quasi-SMILES, were encoded to represent the physicochemical properties and experimental conditions for the MWCNTs from 276 data records collected from previously published studies. The quasi-SMILES used to build the optimal descriptors were (i) diameter, (ii) length, (iii) surface area, (iv) in vitro toxicity assay, (v) cell line, (vi) exposure time, and (vii) dose. The model calculations were performed by using the Monte Carlo method and computed with CORAL software ( www.insilico.eu/coral ). The quasi-SMILES-based nano-QSAR model provided satisfactory statistical results ( R2 for internal validation data sets: 0.60-0.80; R2 pred for external validation data sets: 0.81-0.88). The model showed potential for use in the estimation of human lung cell viability after exposure to MWCNTs with the following properties: diameter, 12-74 nm; length, 0.19-20.25 μm; surface area, 11.3-380.0 m2 /g; and dose, 0-200 ppm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app