Add like
Add dislike
Add to saved papers

Assessment of Cr pollution in tributary sediment cores in the Three Gorges Reservoir combining geochemical baseline and in situ DGT.

The mobility and transfer of trace metals in sediments are vital to understanding trace metals environmental behavior in water environment. However, as a predominant aquatic carcinogen, an effective method for assessing the release and deposition for Cr at the sediment-water interface (SWI) is still not clearly understood. Here we established a comprehensive methodology to evaluate the release risk of Cr at the SWI combining regional geochemical baseline (RGB) and diffusive gradients in thin films (DGT). Sediment cores and water samples were collected in the two tributaries and mainstream of the Three Gorges Reservoir, which is the world's largest man-made hydroelectric station. Results showed that the calculated Cr carcinogenic risks in surface water did not exceed US EPA maximum recommended level. The RGB of Cr (85.53 ± 14.44 mg/kg) were calculated and the differentials between Cr concentration and RGB in surface sediments showed the average anthropogenic contribution rate was 6.03% and the upstream of Meixi River (MX-S) and mainstream were influenced by anthropogenic activities. The net diffusive flux using DGT showed that Cr in the midstream of Caotang River and MX had the potential to move upwards into the overlying water. Furthermore, combining the results of differential (Cr concentration vs. RGB) and the net flux, MX-S was the only site with a risk of Cr release. To the best of our knowledge, this study is the first attempt to combine RGB and DGT to scientifically assess metal release at SWI and provided a new perspective to comprehensively assess metal pollution in water environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app