Add like
Add dislike
Add to saved papers

Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide.

A synthetic process was exploited to fabricate patchy CuO evenly planted on cubic NaTaO3 for photocatalytically reducing CO2 in isopropanol. The nano patches of CuO with about 15 nm in size were uniformly distributed on the surface of NaTaO3 via a phase-transfer protocol and solvothermal synthesis. The crystal phase, morphology, composition, optical absorption and charge separation of as-prepared CuO-NaTaO3 were characterized by XRD, SEM, TEM, EDX, XPS, UV-Vis and PL. The results of photocatalytic reduction of CO2 confirmed that the CuO patched NaTaO3 possessed better ability to separate charge carriers and selectively reduce CO2 to methanol than CuO directly loaded NaTaO3 using the traditional liquid phase reduction procedure after comparing the methanol yields. Furthermore, 5 wt% CuO patched NaTaO3 led to the highest methanol yield of 1302.22 μmol g-1 h-1 . A redox mechanism was proposed and illustrated in a schematic diagram.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app