Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.

Water Research 2018 May 16
Sulfide-modified nanoscale zero-valent iron (S/NZVI) has been considered as an efficient material to degrade trichloroethylene (TCE) in groundwater. However, some critical factors influencing the dechlorination of TCE by S/NZVI have not been investigated clearly. In this study, the effects of Fe/S molar ratio, initial pH, dissolved oxygen and particle aging on TCE dechlorination by S/NZVI (using dithionite as sulfidation reagent) were studied. Besides, the feasibility of reactivation of the aged-NZVI by sulfidation treatment was looked into. The results show that the Fe/S molar ratio and initial pH significantly influenced the TCE dechlorination, and a higher TCE dechlorination was observed at Fe/S molar ratio of ∼60 under alkaline condition. Spectroscopic analyses demonstrate that the enhanced TCE dechlorination was associated with the presence of FeS on the surface of S/NZVI. Dissolved oxygen had little effect on TCE dechlorination by S/NZVI, revealing that the FeS layer could be able to alleviate the surface passivation of NZVI caused by oxidation. Aging of S/NZVI up to 10-20 d only slightly decreased the dechlorination efficiency of TCE. Although an obvious drop in dechorination efficiency was observed for the S/NZVI aged for 30 d, it still exhibited a higher reactivity than the bare NZVI. This indicates that sulfidation of NZVI did prolong its lifetime. Additionally, sulfidation treatment was used to reactivate the aged NZVI, and the results show that the reactivated NZVI even had higher reactivity than the fresh NZVI, suggesting that sulfidation treatment would be a promising method to reactivate the aged NZVI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app