Add like
Add dislike
Add to saved papers

Regional regulation of focal adhesion kinase after concentric and eccentric loading is related to remodelling of human skeletal muscle.

AIMS: We assessed focal adhesion kinase (FAK) response to concentric (CON) vs eccentric (ECC) resistance training (RT) at two vastus lateralis (VL) sites, and the relationships between FAK, muscle protein synthesis (MPS) and morphological remodelling.

METHODS: Six young males trained both legs unilaterally 3 times/week for 8 weeks; one leg performed CON RT, the contralateral performed ECC RT. Muscle biopsies were collected after training from VL mid-belly (MID) and distal (distal) sites at 0, 4, 8 weeks. Focal adhesion kinase content and activation were evaluated by immunoblotting. MPS was assessed by deuterium oxide tracer; morphological adaptations were evaluated by ultrasound and DXA.

RESULTS: pY397-FAK 8 weeks levels were ~4-fold greater after ECC at the distal site compared to CON (P < .05); pY397FAK to total FAK ratio was greater in ECC vs CON at 4 (~2.2-fold, P < .05) and 8 weeks (~9-fold, P < .001) at the distal site. Meta-vinculin was found transiently increased at 4 weeks at the distal site only after ECC RT. ECC presented greater fascicle length (Lf) increases (10.5% vs 4%), whereas CON showed greater in pennation angle (PA) changes (12.3% vs 2.1%). MPS did not differ between exercise types or muscle sites at all time points. distal pY397-FAK and pY397-FAK/FAK values correlated to changes in Lf at 8 weeks (r = .76, P < .01 and r = .66, P < .05 respectively).

CONCLUSION: Focal adhesion kinase phosphorylation was greater at 8 weeks after ECC RT and was muscle region-specific. FAK activity correlated to contraction-dependent architectural remodelling, suggesting a potential role of FAK in orienting muscle structural changes in response to distinct mechanical stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app