Add like
Add dislike
Add to saved papers

Rutaecarpine Suppresses Proliferation and Promotes Apoptosis of Human Pulmonary Artery Smooth Muscle Cells in Hypoxia Possibly Through HIF-1α-Dependent Pathways.

PURPOSE: The aim of this study is to investigate the potential roles of Rutaecarpine (Rut) in hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs) model.

METHODS: HPASMCs were cultured with or without hypoxia followed by Rut administration. Cytotoxicity and cell proliferation were assessed by CCK-8 and Cell counting method. Flow cytometry was used for the measurement of cell apoptosis rates. The mRNA expression of hypoxia-induced factor (HIF)-1α and protein levels of HIF-1α, p53, p21, erythropoietin, and vascular endothelial growth factor were determined by quantitative real-time polymerase chain reaction and Western blot, respectively.

RESULTS: Rut inhibited the proliferation of HPASMCs with IC50 value of 43.5 μmol·L. Hypoxia significantly increased proliferation and decreased apoptosis in HPASMCs, whereas Rut rescued this phenomenon at the appropriate concentration. Meanwhile, Rut effectively decreased the protein and mRNA expressions of HIF-1α. Knockdown of HIF-1α expression by small interfering RNA (siRNA) significantly enhanced the proapoptotic effect rather than antiproliferation effect of Rut in HPASMCs. Moreover, Rut simultaneously reduced proliferating cell nuclear antigen protein expression, whereas increased p53 and p21 protein levels. However, no significant difference was observed in the protein levels of vascular endothelial growth factor and erythropoietin.

CONCLUSIONS: Our results demonstrated that Rut exerted protective effects on HPASMCs against hypoxia partly through the HIF-1α-dependent signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app