Add like
Add dislike
Add to saved papers

Derivation and Validation of an In-Hospital Mortality Prediction Model Suitable for Profiling Hospital Performance in Heart Failure.

BACKGROUND: Comparing heart failure (HF) outcomes across hospitals requires adequate risk adjustment. We aimed to develop and validate a model that can be used to compare quality of HF care across hospitals.

METHODS AND RESULTS: We included patients with HF aged ≥18 years admitted to one of 433 hospitals that participated in the Premier Inc Data Warehouse. This model (Premier) contained patient demographics, comorbidities, and acute conditions present on admission, derived from administrative and billing records. In a separate data set derived from electronic health records, we validated the Premier model by comparing hospital risk-standardized mortality rates calculated with the Premier model to those calculated with a validated clinical model containing laboratory data (LAPS [Laboratory-Based Acute Physiology Score]). Among the 200 832 admissions in the Premier Inc Data Warehouse, inpatient mortality was 4.0%. The model showed acceptable discrimination in the warehouse data (C statistic 0.75; 95% confidence interval, 0.74-0.76). In the validation data set, both the Premier model and the LAPS models showed acceptable discrimination (C statistic: Premier: 0.76 [95% confidence interval, 0.74-0.77]; LAPS: 0.78 [95% confidence interval, 0.76-0.80]). Risk-standardized mortality rates for both models ranged from 2% to 7%. A linear regression equation describing the association between Premier- and LAPS-specific mortality rates revealed a regression line with a slope of 0.71 (SE: 0.07). The correlation coefficient of the standardized mortality rates from the 2 models was 0.82.

CONCLUSIONS: Compared with a validated model derived from clinical data, an HF mortality model derived from administrative data showed highly correlated risk-standardized mortality rate estimates, suggesting it could be used to identify high- and low-performing hospitals for HF care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app