Add like
Add dislike
Add to saved papers

Kinetic Control in the Regioselective Alkylation of Pterin Sensitizers: A Synthetic, Photochemical, and Theoretical Study † .

Alkylation patterns and excited-state properties of pterins were examined both experimentally and theoretically. 2D NMR spectroscopy was used to characterize the pterin derivatives, revealing undoubtedly that the decyl chains were coupled to either the O4 or N3 sites on the pterin. At a temperature of 70°C, the pterin alkylation regioselectively favored the O4 over the N3. The O4 was also favored when using solvents, in which the reactants had increased solubility, namely N,N-dimethylformamide and N,N-dimethylacetamide, rather than solvents in which the reactants had very low solubility (tetrahydrofuran and dichloromethane). Density functional theory (DFT) computed enthalpies correlate to regioselectivity being kinetically driven because the less stable O-isomer forms in higher yield than the more stable N-isomer. Once formed these compounds did not interconvert thermally or undergo a unimolecular "walk" rearrangement. Mechanistic rationale for the factors underlying the regioselective alkylation of pterins is suggested, where kinetic rather than thermodynamic factors are key in the higher yield of the O-isomer. Computations also predicted greater solubility and reduced triplet state energetics thereby improving the properties of the alkylated pterins as 1 O2 sensitizers. Insight on thermal and photostability of the alkylated pterins is also provided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app