Add like
Add dislike
Add to saved papers

Quantitative analysis of glycation and its impact on antigen binding.

MAbs 2018 April
Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app