Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Droplet Impact on Anisotropic Superhydrophobic Surfaces.

A droplet impacting on a superhydrophobic surface exhibits complete bouncing. The impacting process usually consists of spreading and retracting stages, during which the droplet contacts the underlying substrate. Recent research has been devoted to reducing the contact time using textured surfaces with different morphologies or flexibilities. Here, we design submillimeter superhydrophobic ridges and show that impacting droplets bounce off the surface immediately after capillary emptying in a petal-like shape at a certain Weber number range. The absence of a horizontal retraction process in two directions leads to ∼70% reduction in contact time. We demonstrate that the petal bouncing is attributed to the synergistic cooperation of the hierarchical structures and anisotropic property, which endows effective energy storage and release. When touching the bottom of the grooves, obvious flying wings appear along the ridges with a velocity component in the vertical direction, which help the energy releasing process in achieving fast droplet detachment. At higher Weber numbers, the anisotropic surface distorts the mass distribution and promotes uniform fragmentation of the droplet, and therefore the overall contact time is dramatically reduced. Simple analyses are proposed to explain these phenomena, showing a good agreement with the experimental results. The contact time reduction on anisotropic superhydrophobic surfaces is expected to have a great influence on the design and fabrication of anti-icing and self-cleaning surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app