Add like
Add dislike
Add to saved papers

Magnetic Slow Relaxation in a Metal-Organic Framework Made of Chains of Ferromagnetically Coupled Single-Molecule Magnets.

We report the study of a Dy-based metal-organic framework (MOF) with unprecedented magnetic properties. The compound is made of nine-coordinated DyIII magnetic building blocks (MBBs) with poor intrinsic single-molecule magnet behavior. However, the MOF architecture constrains the MBBs in a one-dimensional structure that induces a ferromagnetic coupling between them. Overall, the material shows a magnetic slow relaxation in absence of external static field and a hysteretic behavior at 0.5 K. Low-temperature magnetic studies, diamagnetic doping, and ab initio calculations highlight the crucial role played by the Dy-Dy ferromagnetic interaction. Overall, we report an original magnetic object at the frontier between single-chain magnets and single-molecule magnets that host intrachain couplings that cancel quantum tunneling between the MBBs. This compound is evidence that a bottom-up approach through MOF design can induce spontaneous organization of MBBs able to produce remarkable molecular magnetic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app