Add like
Add dislike
Add to saved papers

Curcumin increases cholesterol efflux via heme oxygenase‑1‑mediated ABCA1 and SR‑BI expression in macrophages.

Curcumin, which is an extract from a traditional Chinese medicine, has previously been demonstrated to exhibit an anti‑atherosclerotic effect, which is closely associated with an increase in cholesterol efflux. However, it is unclear as to whether the increased effect is mediated by heme oxygenase (HO)‑1. Macrophages were treated with different concentrations of curcumin, HO‑1 inhibitor and small interfering (si)RNA in different experiments. Analysis of protein expression was conducted via western blotting. mRNA expression levels were measured using reverse transcription‑polymerase chain reaction. Antioxidant response element (ARE)‑driven promoter activity was measured by a dual‑luciferase reporter assay. The cholesterol efflux analysis was performed by fluorescence‑labelled cholesterol (NBD) using a multi‑label counter. In the present study, the results indicated that curcumin increased the cholesterol efflux from macrophages. Additionally, curcumin significantly upregulated HO‑1 expression. The HO‑1 inhibitor (zinc protoporphyrin) partly blocked this effect. Curcumin also promoted scavenger receptor class B type I (SR‑BI) and ATP‑binding cassette transporter A1 (ABCA1) expression. HO‑1 small interfering (si)RNA partly abolished the increased SR‑BI and ABCA1 expression induced by curcumin. Furthermore, the nuclear factor, erythroid 2 like 2 (Nrf2) expression in the nucleus was dose‑dependently increased by curcumin. Nrf2 siRNA successfully inhibited the curcumin‑induced HO‑1 expression. Curcumin significantly increased Nrf2‑driven luciferase activity. Overall, these data indicated that curcumin activates the Nrf2‑ARE signaling pathway and upregulates HO‑1 expression, which mediates SR‑BI and ABCA1 expression and thereby increases cholesterol efflux.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app