Add like
Add dislike
Add to saved papers

Anti‑apoptotic effects of glycosaminoglycans via inhibition of ERK/AP‑1 signaling in TNF‑α‑stimulated human dermal fibroblasts.

It has been established that glycosaminoglycans (GAGs) serve an important role in protecting the skin against the effects of aging. A previous clinical trial by our group identified that a cream containing GAGs reduced wrinkles and increased skin elasticity, dermal density and skin tightening. However, the exact molecular mechanism underlying the anti‑aging effect of GAGs has not yet been fully elucidated. The present study assessed the influence of GAGs on cell viability, collagen synthesis and collagen synthesis‑associated signaling pathways in tumor necrosis factor‑α (TNF‑α)‑stimulated human dermal fibroblasts (HDFs); an in vitro model of aging. The results demonstrated that GAGs restored type I collagen synthesis and secretion by inhibiting extracellular signal‑regulated kinase (ERK) signaling in TNF‑α‑stimulated HDFs. However, GAGs did not activate c‑jun N‑terminal kinase or p38. It was determined that GAGs suppressed the phosphorylation of downstream transcription factors of ERK activation, activator protein‑1 (AP‑1; c‑fos and c‑jun), leading to a decrease in matrix metalloproteinase‑1 (MMP‑1) levels and the upregulation of tissue inhibitor of metalloproteinase‑1 in TNF‑α‑stimulated HDFs. In addition, GAGs attenuated the apoptosis of HDFs induced by TNF‑α. The current study revealed a novel mechanism: GAGs serve a crucial role in ameliorating TNF‑α‑induced MMP‑1 expression, which causes type I collagen degeneration via the inactivation of ERK/AP‑1 signaling in HDFs. The results of the present study indicate the potential application of GAGs as effective anti‑aging agents that induce wrinkle reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app