JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters.

Plant Journal 2018 May
Plant development and adaptation to environmental stresses are intimately associated with programmed cell death (PCD). Although some of the mechanisms regulating PCD [e.g., accumulation of reactive oxygen species (ROS)] are common among responses to different abiotic stresses, the pathways mediating salt-induced PCD remain largely uncharacterized. Here we report that overexpression of OsNAC2, which encodes a plant-specific transcription factor, promotes salt-induced cell death accompanied by the loss of plasma membrane integrity, nuclear DNA fragmentation, and changes to caspase-like activity. In OsNAC2-knockdown lines, cell death was markedly decreased in response to severe salt stress. Additionally, OsNAC2 expression was enhanced in rice seedlings exposed to a high NaCl concentration. Moreover, the results of quantitative real-time PCR, chromatin immunoprecipitation, dual-luciferase, and yeast one-hybrid assays indicated that OsNAC2 targeted genes that encoded an ROS scavenger (OsCOX11) and a caspase-like protease (OsAP37). Furthermore, K+ -efflux channels (OsGORK and OsSKOR) were clearly activated by OsNAC2. Overall, our results suggested that OsNAC2 accelerates NaCl-induced PCD and provide new insights into the mechanisms that affect ROS accumulation, plant caspase-like activity, and K+ efflux.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app