Add like
Add dislike
Add to saved papers

Substituent control of the ultrafast twisted intramolecular charge transfer rate in dimethylaminochalcone derivatives.

The effect of acceptor strength variation on ultrafast twisting relaxation dynamics was investigated by comparing the ultrafast relaxation dynamics in a series of dimethylaminochalcone (DMAC) derivatives. Employing femtosecond resolved transient absorption and fluorescence experiments, the twisted intramolecular charge transfer (TICT) relaxation rate is shown to vary from 2.0 picoseconds in a weak electron accepting system to 420 femtoseconds in a strong electron accepting system. The strength of the acceptor, empirically expressed as Hammett's constant, is shown to exhibit a linear free energy relationship (LFER) with the twisting rate. It is proposed that variation in the charge pulling capacity of the acceptor modifies the torsional barrier along the TICT coordinate in the S1 state, resulting in a tunable TICT relaxation rate, depending on the acceptor strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app