Add like
Add dislike
Add to saved papers

Structural and Functional Properties of Exopolysaccharide Excreted by a Novel Bacillus anthracis (Strain PFAB2) of Hot Spring Origin.

Exopolysaccharide produced by a unique avirulent Bacillus anthracis strain PFAB2 of hot spring origin has been characterized and its functional properties are investigated which is a first report. Maximum yield of EPS is 7.66 g/l with 2% glucose and 1% peptone as optimum carbon and nitrogen source respectively. The EPS is found to be a homopolymer consisting of only glucose as principle monosaccharide component. Through 1 H NMR study, different dextran-like proton peaks are observed. Molecular weight of the EPS resembles low molecular weight bacterial origin polysaccharides. Melting transition of the EPS has started after 276 °C which indicates good thermal stability. The EPS also shows potent antioxidant activity in terms of DPPH and ABTS mediated free radical scavenging property compared to standard ascorbic acid. Emulsifying property of the EPS is also observed and has shown good emulsification of vegetable oils. The polysaccharide forms a thermo resistant gel during the heating phase, with G' higher than G″ indicating excellent shear-thinning behaviour and viscoelastic nature of the EPS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app