Add like
Add dislike
Add to saved papers

Role of myocardial collagen degradation and fibrosis in right ventricle dysfunction in transposition of the great arteries after atrial switch.

BACKGROUND: Heart failure is a serious event in patients with transposition of the great arteries (D-TGA) after atrial redirection surgery. We aimed to determine the association between myocardial fibrosis and systolic and diastolic systemic right ventricle (sRV) dysfunction.

METHODS: Diastolic and systolic function of sRV was prospectively assessed using echocardiography and cardiac magnetic resonance imaging (CMR) in 48 patients with atrially switched D-TGA and 26 healthy subjects. Diastolic function of the subaortic ventricle was assessed by echocardiography Doppler and DTI. In CMR, ejection fraction of sRV and wall stress defined as the product of the systolic blood pressure and volume/mass ratio were assessed. Fibrosis extent within sRV myocardium was evaluated using gadolinium-enhanced magnetic resonance and serum collagen turnover biomarkers.

RESULTS: Late gadolinium enhancement (LGE) was found in 35% of D-TGA patients, and the collagen degradation biomarker pro-MMP1:TIMP1 ratio was significantly increased in D-TGA patients compared to healthy subjects (1.0 × 10-2 vs. 2.5 × 10-2 , p = 0.04). Increase in sRV wall stress was significantly associated with LGE (p = 0.01) and pro-MMP1:TIMP1 ratio (r = 0.77, p < 0.01). After adjustment for age, sex, BMI, blood pressure and cardiac treatment, pro-MMP1:TIMP1 ratio was the strongest determinant of sRVEF (R2  = 0.85, p < 0.01). Pro-MMP1:TIMP1 ratio was also significantly correlated with the early diastolic filling parameter E/E' (r = 0.53, p = 0.02), but this was not anymore the case after adjustment.

CONCLUSIONS: Diastolic and systolic sRV dysfunction is related to myocardial collagen degradation and fibrosis. Research in medical therapies that reduce systemic sRV afterload and limit collagen degradation is warranted in this setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app