Add like
Add dislike
Add to saved papers

Structure characteristics for intestinal uptake of flavonoids in Caco-2 cells.

Flavonoids are a large group of polyphenols and widely distributed in plant foods. Flavonoids exhibit various biological activities, such as anti-cancer, antioxidant and anti-inflammatory while poor oral bioavailability has been considered as a major hurdle in their use as functional foods. Cellular uptake and efflux of flavonoid implicates their bioavailability. To investigate the cellular uptake and efflux of flavonoids, 27 flavonoids were measured for their cellular uptake in Caco-2 cells with (CUV) and without (CU) the inhibitor of P-glycoprotein (P-gp) verapamil. Then, a quantitative structure-absorption relationship (QSAR) model containing 21 compounds as training set was obtained from their corresponding CU. The model showed good robustness and predictivity with a high cross-validation coefficient (Q2 ) value of 0.809 and Log of the octanol/water partition coefficient (SlogP) and atomic charge on carbon 5 (QC5 ) were related to flavonoid uptake. The CUV of some flavonoids were significantly (p<0.05 or p<0.01) higher than their CU, suggesting that specific flavonoids are pumped out by P-gp. The structure-affinity relationship of flavonoids as substrates of P-gp was determined with the presence of 4'-OCH3 , 3'-OCH3 and the absence of 3'-OH, 3-OH and 4'-OH favorable for the affinity of flavonoids. These results provide valuable information for screening flavonoids with good absorption and low affinity with transporters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app