Add like
Add dislike
Add to saved papers

Classification of pathogenic microbes using a minimal set of single nucleotide polymorphisms derived from whole genome sequences.

Genomics 2018 Februrary 11
In a context specific manner, Intra-species genomic variation plays an important role in phenotypic diversity observed among pathogenic microbes. Efficient classification of these pathogens is important for diagnosis and treatment of several infectious diseases. NGS technologies have provided access to wealth of data that can be utilized to discover important markers for pathogen classification. In this paper, we described three different approaches (Jensen-Shannon divergence, random forest and Shewhart control chart) for identification of a minimal set of SNPs that can be used for classification of organisms. These methods are generic and can be implemented for analysis of any organism. We have shown usefulness of these approaches for analysis of Mycobacterium tuberculosis and Escherichia coli isolates. We were able to identify a minimal set of 18 SNPs that can be used as molecular markers for phylogroup based classification and 8 SNPs for pathogroup based classification of E. coli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app