Add like
Add dislike
Add to saved papers

Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin.

Pseudomonas aeruginosa is an important etiological agent of opportunistic infections. Injectable colistin is available as a last-line treatment option for multidrug-resistant P. aeruginosa infections. When cells were inoculated at a high number, colistin-susceptible P. aeruginosa grew on agar medium containing colistin at a concentration 10-fold higher than the minimum inhibitory concentration without acquiring colistin resistance. This study examined the responsible mechanism for growth in the presence of a high concentration of colistin. Cell wash fluid derived from P. aeruginosa efficiently reduced colistin antimicrobial activity. This reduction was mediated by lipopolysaccharide (LPS) in the wash fluid. Extracellular LPS inhibited colistin activity more effectively than cell-bound LPS in fixed cells. Cell wash fluids from Escherichia coli and Acinetobacter baumannii also reduced colistin activity; however, they were less potent than those from P. aeruginosa. The amount of LPS in cell wash fluid from P. aeruginosa was approximately 10-fold higher than that in fluid from E. coli or A. baumannii. In conclusion, cell-free LPS derived from bacterial cells inhibited the antimicrobial activity of colistin, and this effect was greatest for P. aeruginosa. Thus, large amounts of broken and dead cells of P. aeruginosa at infection foci will reduce the effectiveness of colistin, even against cells that have not yet acquired resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app